New pulsar distance record may help detect elusive gravitational waves | india | Hindustan Times
Today in New Delhi, India
Feb 24, 2017-Friday
New Delhi
  • Humidity
  • Wind

New pulsar distance record may help detect elusive gravitational waves

india Updated: Jun 14, 2013 19:23 IST

An international team of scientists (ASTRON) have used the Very Long Baseline Array (VLBA) to set a new distance accuracy record, pegging a pulsar called PSR J2222-0137 at 871.4 light-years from Earth.

The team led by astronomer Adam Deller did this by observing the object over a two-year period to detect its parallax, the slight shift in apparent position against background objects when viewed from opposite ends of Earth’s orbit around the Sun.

With an uncertainty less than four light-years, this distance measurement is 30 percent more accurate than that of the previous-best pulsar distance. The VLBA observations were even able to discern the orbital motion of the pulsar around its as-yet undetected companion object, despite this motion being no larger than a small coin observed at a tenth of the distance to the Moon.

By showing that PSR J2222-0137 is 15 percent closer than previous estimates, this impressive achievement can advance our understanding of the system. With the distance to the pulsar pinned down, proposed highly sensitive visible-light observations should determine the nature of the undetected companion. If no source can be found, the companion must be a neutron star, while a white-dwarf companion will show up as a faint optical source.

The accuracy of the new measurement promises to help in the quest to detect the elusive gravitational waves predicted by general relativity. By monitoring an array of pulsars across the Milky Way galaxy, scientists hope to measure the distortions of space-time caused by the passage of gravitational waves. Knowing the distances to these pulsars extremely precisely can improve the sensitivity of the technique to detect individual sources of gravitational waves.

The VLBA is operated by the National Radio Astronomy Observatory (NRAO). The results of the research have been published in The Astrophysical Journal.