Maverick Tech | world | Hindustan Times
Today in New Delhi, India
Jul 28, 2017-Friday
New Delhi
  • Humidity
  • Wind

Maverick Tech

The Massachusetts Institute of Technology has led the world into the future for 150 years. So, what makes the university such a fertile ground for brilliant ideas?

world Updated: May 22, 2011 01:09 IST

Yo-Yo Ma's cello may not be the obvious starting point for a journey into one of the world's great universities. But, as you quickly realise when you step inside the campus of the Massachusetts Institute of Technology (MIT), there's precious little about the place that is obvious.

The cello is resting in a corner of MIT's celebrated media lab, a hub of techy creativity. It is part of the Opera of the Future lab run by the infectiously energetic Tod Machover. A renaissance man for the 21st - or perhaps 22nd - century, Machover is a composer, inventor and teacher rolled into one. He sweeps into the office 10 minutes late, which is odd because his watch is permanently set 20 minutes ahead in a patently vain effort to be punctual. Then, with the urgency of the White Rabbit, he rushes me across the room to show me the cello. It looks like any other electric classical instrument, with a solid wood body and jack socket. But it is much more. Machover calls it a "hyperinstrument", a sort of thinking machine that allows Ma and his cello to interact with one another and make music together.

"The aim is to build an instrument worthy of a great musician like Yo-Yo Ma that can understand what he is trying to do and respond to it," Machover says. The cello has numerous sensors across its body, fret and along the bow. By measuring the pressure, speed and angle of the virtuoso's performance it can interpret his mood and engage with it, producing extraordinary new sounds. The virtuoso cellist frequently performs on the instrument as he tours around the world.

When Machover was developing the instrument, he found that the sound it made was distorted by Ma's hand as it absorbed electric current flowing from the bow. Machover had a eureka moment. What if you reversed that? What if you channelled the electricity flowing from the performer's body and turned it into music?

Armed with that new idea, Machover designed an interactive system for Prince that the rock star deployed on stage at Wembley Stadium a few years ago, conjuring up haunting sounds through touch and gesture. Later, two of Machover's students at the media lab had the idea of devising an interactive game out of the technology. They went on to set up a company called Harmonix, based just down the road from MIT in Cambridge, Massachusetts, from which they developed Rock Band and Guitar Hero.

From Ma's cello, via Prince, to one of the most popular video games ever invented. And all stemming from Machover's passion for pushing at the boundaries of the existing world to extend and unleash human potential. That's not a bad description of MIT as a whole. This maverick community, on the other side of the Charles River from Boston, brings highly gifted, highly motivated individuals together from a vast range of disciplines but united by a common desire: to leap into the dark and reach for the unknown.

The result of that single unifying ambition is visible all around us. For the past 150 years, MIT has been leading us into the future. The discoveries of its teachers and students have become the warp and weft of modernity, the stuff of daily life that we now all take for granted. The telephone, electromagnets, radars, high-speed photography, office photocopiers, cancer treatments, pocket calculators, computers, the internet, the decoding of the human genome, lasers, space travel . . . the list of innovations that involved essential contributions from MIT and its faculty goes on and on.

And with that drive into modernity MIT has played no small part in building western, and particularly US, global dominance. Its explosive innovations have helped to secure America's military and cultural supremacy, and with it the country's status as the world's sole superpower.

As the school marks its 150th anniversary this month, it seems the US has never needed MIT's help more than it does today. The voices of the nay-sayers are in the ascendancy, questioning the US's ability to reinvent itself, to heal its wounded economy and sustain its leadership in the face of a burgeoning China. Questions too, are increasingly being asked about the ability of science and technology to address the world's problems, as optimism about the future slides into doubt. "There is a profound cynicism around the role of science that is debilitating for those in the enterprise, and devastating for this country," says MIT's president, Susan Hockfield. "If we can't figure out how to make technological innovation the path to the future, then America is not going to have invented the future, some other country will have."

She fears the US is increasingly suffering from what she calls a deficit of ambition. While 85% of MIT students are studying science and engineering, in the US as a whole the proportion is just 15%. That leaves the world's creative powerhouse vulnerable. "If you travel to Asia, to Shanghai or Bangalore, you feel the pulse of people racing to a future they are going to invent. You feel that rarely any more in the US."

Which makes MIT's mission all the more essential. "MIT has an enormous responsibility right now," Hockfield says. "We feel that deeply. It needs to be a beacon of inspiration around the power of science and technology to create a brighter future for the world."

No pressure, then.

From the moment MIT was founded by William Barton Rogers in 1861 it was clear what it was not. It was not like the other school up the river. While Harvard stuck to the English model of an Oxbridge classical education, with its emphasis on Latin and Greek as befitted the landed aristocracy, MIT would look to the German system of learning based on research and hands-on experimentation, championing meritocracy and industry where Harvard preferred the privileges of birth. Knowledge was at a premium, yes, but it had to be useful.

This gritty, down-to-earth quality, in keeping with the industrialisation that was spreading through the US at the time, was enshrined in the school motto, Mens et Manus - Mind and Hand - as well as its logo, which showed a gowned scholar standing beside an ironmonger bearing a hammer and anvil. That symbiosis of intellect and craftsmanship still suffuses the institute's classrooms, where students are not so much taught as engaged and inspired. There is a famous film of one of MIT's star professors, the physicist Walter Lewin, demonstrating the relationship between an oscillating metal ball and mass. Halfway through the experiment he climbs on to the ball and starts swinging himself around the lecture theatre in a huge oscillating arch as though he were appearing in Spider-Man on Broadway.

When Emily Dunne, an 18-year-old mechanical engineering student from Bermuda, was taking a course in differential equations recently, she was startled when her professor started singing in the middle of the lecture. "He was trying to show us how to understand overtones. It was kind of weird, but then everyone here is a little quirky," she says.

Mind and Hand applies too to MIT's belief that theory and practice go together; neither is superior to the other, and the two are stronger when combined. That conviction is as strongly held by the lowliest student as it is by its Nobel laureates (there have been 50 of them).

Take Christopher Merrill, 21, a third-year undergraduate in computer science. He is spending most of his time on a competition set in his robotics class.

The contest is to see which student can most effectively programme a robot to build a house out of blocks in under 10 minutes. Merrill says he could have gone for the easiest route - designing a simple robot that would build the house quickly. But he wanted to try to master an area of robotics that remains unconquered - adaptability, the ability of the robot to rethink its plans as the environment around it changes, as would a human.

"I like to take on things that have never been done before rather than to work in an iterative way just making small steps forward," he explains. "It's much more exciting to go out into the unknown."