ISRO begins countdown to the launch of IRNSS 1H | science | Hindustan Times
Today in New Delhi, India
Aug 21, 2018-Tuesday
-°C
New Delhi
  • Humidity
    -
  • Wind
    -

ISRO begins countdown to the launch of IRNSS 1H

The IRNSS 1 H will form part of the NavIC that is India’s own version of GPS that helps in everything from navigation of ships, to traffic management to locating restaurants.

science Updated: Aug 30, 2017 12:44 IST
ISRO,IRNSS 1H,NavIC
ISRO scientists prepare for the launch of IRNSS 1 H on the PSLV satellite launch vehicle.(Courtesy: ISRO)

At 7 pm on Aug 31, ISRO will launch the IRNSS 1 H, a satellite that will augment India’s indigenous GPS system called NavIC (Navigation with Indian Constellation), from the Satish Dhawan Space Centre at Sriharikota.

There are seven satellites in the NavIC system currently, all launched between 2013 and 2016. The IRNSS 1 H launch was necessitated by a malfunction in the IRNSS 1A, the first satellite to be launched in this series. By mid-2016 problems surfaced with the atomic clocks onboard the satellite that helps keep time with a high degree of accuracy. It is an essential part of a navigational system.

Each satellite in the IRNSS series has three atomic clocks, one primary and two back ups. All 21 clocks that are currently onboard these satellites are manufactured by Spectracom, which is part of the Orolia Group, a conglomerate headquartered in the United States.

The atomic clocks onboard the IRNSS 1H are also from Spectracom, supplied by their manufacturing plant in Switzerland. These are rubidium-based atomic clocks, that have a high degree of accuracy unlike the electronic clocks used by earth-dwelling folk. These clocks do not lose or gain even a single second over millions of years.

“We identified the problem and the new clocks have the necessary corrections, they are purely technical in nature,” Deviprasad Karnik, spokesperson for ISRO, said but declined to shed light on the nature of the problem or the corrections.

An official at Spectrocom who spoke on the condition of anonymity said that no design changes had been made to the clocks as per his knowledge. He explained that atomic clocks like the one onboard the IRNSS could fail for many reasons including lack of improper voltage being supplied to the clock.

The IRNSS 1H will not exactly displace the IRNSS 1 A which has been relaying fuzzy data since the clock failures but rather be used in tandem.

The Rubidium atomic clocks form part of the navigation payload and the IRNSS 1H will be used for navigation services while the IRNSS-1A will continue to be used for messaging services.

The main applications of NavIC are in:

Shipping: Merchant ships use them for navigation and also for disaster management on the high seas.

Road Transport: It is used for navigation on roads as well as helping operators track their consignments and for traffic management by government agencies.

Railways: NavIC is also used to track train movements and for estimating time of arrival and departure.

Resource Management: These satellites inform the geo-tagging and geo-fencing of objects that help entrepreneurs and governments track if there is movement of goods beyond designated boundaries.

Location Based Services: Navigational satellites are essential to operations like finding nearby restaurants, shops, hospitals and petrol pumps.

Time Synchronised Services: NavIc is also used in telecom operations, power grid operations, disaster management and atmospheric studies.

First Published: Aug 30, 2017 12:44 IST