New Delhi -°C
Today in New Delhi, India

Aug 07, 2020-Friday
-°C

Humidity
-

Wind
-

Select Country
Select city
ADVERTISEMENT
Home / Education / IIT-Jodhpur breakthrough in biofuel production

IIT-Jodhpur breakthrough in biofuel production

Considering these needs and inspired by nature, Prof. Sharma has developed many Rajasthani clay-based effective catalytic systems for difficult chemical processes under mild conditions.

education Updated: Jul 05, 2020 16:13 IST
Dinesh Bohra
Dinesh Bohra
Hindustan Times, Jodhpur
IIT-Jodhpur breakthrough in biofuel production
IIT-Jodhpur breakthrough in biofuel production(Getty Images/iStockphoto)

Fuel from waste is possible. Previously, converting organic waste to fuel was not economically feasible because it required very high temperatures and energy. Using a novel catalyst concept, the Indian Institute of Technology Jodhpur have now managed to significantly reduce the temperature and energy requirements for a key step in the chemical process in biofuel production.

Professor Rakesh K Sharma and his postdoctoral researcher Dr. Krishnapriya have developed a catalytic system that has nanometre size cramped galleries in Silica-Alumina sheets (a refined form of clay). These confined galleries work as nanoreactor for catalytic reaction and convert the biomass to transport fuel under mild conditions. The process is under patent. The findings of this research have been published in two journals; RSC Journal Sustainable Energy & Fuels and Fuel from Elsevier recently. The department of biotechnology has supported this study under the National Bioenergy Mission.

“Biofuels are an important part of the far-reaching strategy to replace petroleum-based petrol and diesel, and jet fuels. However, biofuels have so far not reached cost equality with conventional petroleum fuels. One strategy to make biofuels more competitive is to use waste and biomass as a feed that converts it in fuel, fertilizer, and value-added products at minimum energy consumption,” said Prof Sharma.

Considering these needs and inspired by nature, Prof. Sharma has developed many Rajasthani clay-based effective catalytic systems for difficult chemical processes under mild conditions. The ideas of developing new catalyst generated from the geogenic and biological systems where enzymes with small cavities in their surface accelerate chemical processes drastically.

“While searching for suitable catalysts that accelerate the reaction, clay caught our eyes, which we have refined and modified to generate highly crystalline clay mineral with nanometer galleries, with atomically dispersed non-noble cobalt oxide. The reactions take place in these galleries under confined conditions comparable to those in enzyme pockets. These confined quarters increase the reactivity amazingly when we compared with normal clays or other silica or alumina based catalysts. The reaction is extremely fast and takes place just around 250 degree temperature to give petroleum grade fuel,” he added.

The nanometre galleries in silica-alumina improve the reaction path by creating more contact between biomass molecules and hydrogen on the cobalt oxide surface. In this process, organic molecules such as sugars, bio-oil, algae, cellulose, and organic waste lose their oxygen to give hydrocarbon, a process called hydrodeoxygenation. The developed catalytic process makes the process suitable for converting bio-oil obtained from organic waste into transport fuel and opens doors of possibilities for biorefineries.

ht epaper

Sign In to continue reading