IIT Hyderabad produces collagen for stem cell-based tissue engineering from waste eel skin - Hindustan Times
close_game
close_game

IIT Hyderabad produces collagen for stem cell-based tissue engineering from waste eel skin

Hindustan Times, New Delhi | By
Aug 26, 2019 02:40 PM IST

Sustainable utilization of marine discarded eel skin derived-collagen for biomedical application will boost Indian ‘blue’ bioeconomic growth and help develop an alternate industry that converts waste into useful products

Indian Institute of Technology Hyderabad Researchers have derived collagen from waste eel skin and shown that tissue scaffolds built using such collagen allow growth and proliferation of stem cells. The practical applications of this research can lead to utilising eel fish skin-derived collagen as a promising alternative to animal derived collagen, which are expensive and associated with pathological diseases.

3D printing of Eel kin collagen scaffold.(Handout image)
3D printing of Eel kin collagen scaffold.(Handout image)

The researchers believe that sustainable utilisation of marine discarded eel skin derived-collagen for the biomedical application would boost Indian ‘blue’ bioeconomic growth and help in the development of an alternate industry that converts waste into useful products.

Unlock exclusive access to the latest news on India's general elections, only on the HT App. Download Now! Download Now!

The research, funded by Department of Science and Technology-Science and Engineering Research Board (DST-SERB), Government of India through the National Postdoctoral Fellowship Scheme (N-PDF) was led by Dr Mano Govindharaj, Young Scientist Fellow and Dr Subha Narayan Rath, Associate Professor, Department of Biomedical Engineering, IIT Hyderabad and included Research Scholar Uday Kiran Roopavath. The team’s research has been published recently in the reputed peer-reviewed Journal of Cleaner Production.

Read: IITian from Bihar clears RRB Group D exam, now works as trackman in Dhanbad

Explaining this research and its significance, Dr Mano Govindharaj, Young Scientist Fellow, Regenerative Medicine and Stem Cell Laboratory, IIT Hyderabad, said, “Our team’s finding is a valuable asset in the area of ‘blue’ biotechnology. The color ‘blue’ in biotechnology is assigned to the development of technology on the basis of aquaculture, coastal and marine biology. Our research group at IIT Hyderabad uses a common marine waste product for producing collagen, a biomaterial that is extensively used in tissue engineering.”

Low immunogenicity, porous structure, good permeability, biocompatibility and biodegradability make collagen scaffolds useful in tissue engineering applications. Collagen is usually extracted from bovine skin and tendons, porcine skin and rat tail. Such sources are associated with several problems such as the spread of diseases such as the mad-cow disease and religious constraints of using certain animals. Extraction of collagen from non-mammalian sources is therefore attractive.

Read: IIT Hyderabad researchers develop efficient sensor device to rapidly detect heart diseases

Speaking about the advantages gained from this research, Dr. Subha Narayan Rath said, “We have explored the valorization of commoditized discarded marine Eel skin to develop value added collagen-based blue biomaterials. The advantages of this extraction process are twofold. Not only does it serve to provide a sustainable and safe source for collagen but also helps in waste management. Eel skin and fish skin wastes are commonly discarded in coastal areas, or even disposed of in the sea, which leads to a cascade of events due to breakdown of organic matter and reduction of oxygen levels in sea water.”

The research team derived collagen from eel skin by treating it with acetic acid, common salt and pepsin. The researchers then combined the collagen with alginate hydrogel and used a 3D printing process to obtain scaffolds.

When the scaffolds were tested for stem cell growth and proliferation, the researchers found that the 3D printed collagen scaffolds allowed extensive growth of stem cells, thus making eel-skin derived collagen a promising material for tissue engineering applications.

Elevate your career with VIT’s MBA programme that has been designed by its acclaimed faculty & stands out as a beacon for working professionals. Explore now!

Discover the complete story of India's general elections on our exclusive Elections Product! Access all the content absolutely free on the HT App. Download now!
Get latest news on Education along with Board Exam, Competitive Exam and Exam Result at Hindustan Times. Also get latest Job updates on Employment News
SHARE THIS ARTICLE ON
Share this article
SHARE
Story Saved
Live Score
OPEN APP
Saved Articles
Following
My Reads
Sign out
New Delhi 0C
Saturday, May 25, 2024
Start 14 Days Free Trial Subscribe Now
Follow Us On